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In this paper, I investigate the potential of robots to improve surgeons’ performance and

study whether the returns from using this technology depend on the skills of the surgeon

using it. Using data from the universe of inpatient admissions for prostate cancer surgery in

England, I show that while technological advancements in many fields have typically favored

more skilled individuals, here are the low-skill surgeons whose performance benefits the

most. As differences in outcomes between highly and less skilled surgeons shrink when the

technology is used, my analysis suggests that the robot may alleviate unwarranted disparities

in the quality of care. However, I find evidence of suboptimal behavior on the provider’s

side. Even tho the low-skill surgeons have the highest returns, they use the technology the

least, limiting the attainable benefits from technology adoption.



1 Introduction

Technological change has been observed to have important implications for the returns to

skills across the economy. Current research suggests that advanced technologies such as

robots and ICT have been skill-biased (Katz & Murphy 1992, Krusell et al. 2000, Autor

et al. 2003, Acemoglu & Autor 2011). The losers in this process are typically those working

in low-skill jobs, whose tasks can be easily automated and performed by machines.

In this paper, I take the idea of skill bias to a micro level and study the effects of

technology adoption on the returns to skills within a single high-skill occupation. My focus

is on the adoption of robots in surgery, where I investigate the potential of this technology to

improve surgeons’ performance and, as a consequence, patient outcomes, and study whether

its returns depend on the actual skills of the surgeon using it.

As economists, we mostly think of robots competing against human labor in the pro-

duction process (Acemoglu & Restrepo 2020, Humlum 2019). Tasks previously performed

by workers are automated and executed by the machine more precisely and consistently. In

many applications, however, the robot is meant to aid rather than substitute the worker.

Surgical robots, for example, are fully operated by surgeons and act as an extension of their

users. These machines, like many others, require explicit operator inputs to be effective,

and for this reason, any conceivable outcome from adoption will inevitably depend on the

interaction between the human and the technology.

Across and within occupations, individuals exhibit significant variation in their skills,

and healthcare providers, such as surgeons and doctors, are no exception (Chan et al. 2022,

Currie & MacLeod 2017, Kolstad 2013). While technological advancements in many fields

have favored more skilled individuals (Acemoglu 2002, Autor et al. 1998), the existence and

direction of a hypothetical skill bias in this context is ex-ante uncertain.

Operating the robot inevitably requires some skills, which may be more prevalent among

surgeons who excelled with traditional techniques. At the same time, the robot eliminates

the need for other skills, such as having steady hands, thereby reducing the performance
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advantage of conventionally superior surgeons. Whether one effect or the other prevails is of

interest in itself, but it also comes with important consequences for policymaking. Differences

in providers’ skills are thought to generate inequality and aggravate systematic disparities

in the access to public services (Finkelstein et al. 2016, Chandra & Skinner 2003, Deaton

2003). Robotic technology may exacerbate variation in surgical performance, or may be a

solution to this problem if its returns are decreasing in surgeons’ skills.

Using data from the universe of inpatient admissions for prostate cancer surgery in Eng-

land, I find that robotic surgery improves surgeons’ performance. The robot reduces post-

operative length of stay and morbidity across patients. However, my analysis reveals that

these effects are highly heterogeneous, and technological gains significantly depend on the

surgeon’s skills. High-skill surgeons benefit the least from the technology, while low-skill

surgeons gain the most. Technically, the robot appears to have decreasing returns in skills,

with a bias that favors the low-skill surgeons. As differences in patient outcomes between

highly and less skilled surgeons shrink when the technology is used, my analysis suggests

that the robot may reduce variation in patient outcomes. This effect appears to ensue from

low-skill surgeons performing significantly more poorly without any technological aid and

the technology equalizing them to the high-skill surgeons.

Identifying the existence of skill bias at a micro level comes with its own empirical chal-

lenges. Part of my contribution is to study the impact of this new technology in the pres-

ence of both heterogeneous treatment effects and a selection problem. To this day, medical

evidence that robotic surgery improves patient outcomes, relative to the more invasive al-

ternative (i.e., open surgery), has been at best inconclusive (Coughlin et al. 2018, Yaxley

et al. 2016, Robertson et al. 2013, Bolla et al. 2012). Existing studies are based on small

and selected samples (Neuner et al. 2012) and are not designed to identify causal effects (Ho

et al. 2013). If the potential of robotic surgery to improve performance depends on surgical

skills, small sample studies will reflect only part of the picture. Moreover, if the uptake

of this technology is also heterogeneous across the skills distribution, any naive correlation
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will speak more to the characteristics of the adopters rather than the technology itself. Im-

portantly, when treatment effects are heterogeneous, surgeons and patients may choose the

robot based on their specific technological gains. Regression-adjusted comparisons between

robotic and traditional surgery would, in this case, provide misleading estimates if adoption

is informed by unobserved factors that influence selection (Suri 2011).

To identify causal effects, I leverage an approach introduced by Björklund & Moffitt

(1987) and generalized in Heckman & Vytlacil (1999) and Heckman & Vytlacil (2005) that

concentrates on the Marginal Treatment Effect (MTE). In this context, the MTE is the

average effect of robots on the outcome of a surgeon’s patient equally likely to be operated

with robotic and traditional surgery (i.e., at the same margin of indifference). I show that

the MTE nests my parameter of interest, and its estimation allows me to directly identify

the causal effects of robots on patient outcomes and how these depend on observable surgical

skills.

Identification of causal effects in the MTE framework requires, in most cases, no stronger

assumptions than standard instrumental variable methods but poses a more substantial

burden on the instrument. This method usually requires at least one valid and continuous

instrumental variable with large support (Mogstad et al. 2018, Heckman & Vytlacil 2005).

In England, the acquisition of surgical robots has been managed by individual hospitals,

resulting in an uneven distribution of robots geographically and creating differences in the

availability of the technology across areas and over time (Lam et al. 2021). Building on the

work of Gowrisankaran & Town (1999), McClellan & Newhouse (1997) and McClellan et al.

(1994), I argue that variation in a patient’s relative distance to a robot-equipped hospital

is sufficient to identify my parameter of interest under the assumption that patients do not

sort across providers based on their unobserved health returns from the technology.

An important constraint I face is that skills are not directly observable, and in this con-

text, using education as a proxy is unfeasible. I revert to employing a single risk-adjusted

indicator of surgeons’ postoperative morbidity to measure skills. The indicator tells me
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whether the surgeon counts more complications and similar adverse events than what would

be expected given their patients’ observable characteristics. Because I anticipate the robot

will impact surgeons’ performance, I estimate this indicator using data from the years pre-

ceding the national introduction of this technology. In fact, the indicator is measured when

all operations were carried out without technological aid and is not affected by the surgeons’

adoption behavior. To ensure that the skill measure I derive is not affected by unobserved

factors that affect selection across high and low-skill surgeons, I employ three alternative

strategies and test the robustness of my results to each.

Having established that surgeons exhibit significant variation in their skills, I focus on

two patient outcomes to identify the effect of the robot on surgeons’ performance. These are

the speed of recovery (i.e., postoperative length of stay) and the occurrence of adverse events

from surgery (i.e., postoperative morbidity, which I also use to estimate skills). Both matter

to physicians, patients, and policymakers (Lotan 2012), and robotic surgery should have a

measurable effect on them as it increases precision and requires smaller incisions (Higgins

et al. 2017, Coelho et al. 2010, Lowrance et al. 2010, Nelson et al. 2007).

This study builds on several branches of the economics literature, yet nonetheless, is

novel from many perspectives. First and foremost, this paper draws on the literature on

the effects of technology on the labor market. The idea that technology complements either

high or low-skill workers has been incorporated in many notable contributions discussing the

evolution of wages and earnings in the US (Carneiro & Lee 2011, Acemoglu & Autor 2011,

Autor et al. 2008, 1998, Katz & Murphy 1992). I bring the concept of skill bias to a new

setting where individuals’ skills vary within the same occupation. This is in stark contrast

to the literature in this area, which generally thinks about the interaction of education and

technology (Goldin & Katz 2018). In my context, all workers have the same education level,

but the technology still complements some more than others. This provides a new perspective

on the implications of technology adoption, which may have distributional effects across and

within occupations.
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The idea that technology makes certain skills redundant while also creating new tasks has

been argued in a voluminous and influential branch of the economics literature (Acemoglu

& Restrepo 2019, 2018, Acemoglu & Autor 2011, Autor et al. 2003, Acemoglu & Zilibotti

2001, Zeira 1998). Autor et al. (2003), for example, discusses how the computer has replaced

workers in cognitive and manual tasks and complemented them in nonroutine tasks. This

approach has significantly influenced how I conceptualize robots and surgeons working to-

gether. My contribution is to show that this trade-off, which determines who benefits from

technology adoption, also works at a micro level.

An ever-growing part of this field studies robots in particular (Acemoglu et al. 2023, Ace-

moglu & Restrepo 2022, Koch et al. 2021, Acemoglu & Restrepo 2020, Acemoglu et al. 2020,

Humlum 2019, Graetz & Michaels 2018). The empirical focus is primarily on automated

industrial robots and their industry-level effects on employment and wages. Few scholars

have studied surgical robots. Using US data Horn et al. (2022) shows that adopting a robot

can increase the demand for a hospital. Maynou et al. (2021) describes a similar pattern for

the UK and show that adopting robots correlates with reduced readmissions and length of

stay. Maynou et al. (2022) discusses how using robots for prostate cancer patients affected

their diffusion in other specialties in the UK. To the best of my knowledge, this is the first

paper to incorporate considerations about skill complementarities in relation to robots at

the micro level that occurs within a high-skill occupation.

Several scholars have documented heterogeneity in skills and treatment rates across

healthcare providers. Chan et al. (2022), Currie & MacLeod (2017), and Abaluck et al.

(2016) show that doctors differ in their ability to diagnose patients. Part of this literature

focuses on the role of comparative advantage in explaining providers’ treatment decisions. In

Chandra & Staiger (2007), productivity spillovers generate heterogeneity in returns, which

may induce some hospitals to use a certain treatment more intensively. In a recent paper,

Breg (2022) shows that tradeoffs between multiple dimensions of health may explain differ-

ences in treatment rates. Chandra & Staiger (2020) conclude that most hospitals overuse
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treatments in part because of incorrect beliefs about their comparative advantage. I add to

this literature by showing that adopting new technologies may limit the extent to which skill

heterogeneity affects patient outcomes, but some providers may underuse the innovation,

limiting its potential.

Lastly, the results of this paper are consistent with the nascent literature on the effects

of generative AI. Brynjolfsson et al. (2023), Choi & Schwarcz (2023), Noy & Zhang (2023),

and Peng et al. (2023) all find that AI compresses the productivity distribution, with lower-

skill workers benefiting the most. The intuition behind the results of these studies is closely

aligned with the empirical evidence I find in this paper. AI enhances the performance of

low-skill workers by mimicking the behavior of high-skill workers. Similarly, my findings

suggest that the robot improves the performance of low-skill surgeons by reproducing the

skills of a high-skill surgeon, such as having steady hands.

The paper proceeds as follows: Section 2 describes surgical robots and their use for

prostate cancer surgery; Section 3 describes the data and institutional setting; Section 4

explains how I measure surgeons’ skills; Section 5 presents the econometric challenge, model,

and the conditions required to identify and estimate the parameter of interest; Section 6

summarizes the results; Finally, I offer my conclusions in Section 7.

2 Robotic Surgery for Prostate Cancer

2.1 Robotic Surgery

The use of robotics in surgery was hypothesized as far back as 1967, but it took nearly

30 years for the National Aeronautics and Space Administration (NASA) to complete the

first functional surgical robot (George et al. 2018). Now, the only type of surgical robot

currently available in the US and the UK is the da Vinci surgical system manufactured by

the California-based company Intuitive.

The da Vinci robot has three components, which I show in Figure I:
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1. a viewing and control console that the surgeon uses,

2. a manipulator arm unit that includes three or more arms,

3. a vision cart that connects all the system elements and facilitates communication be-

tween the surgeon console and robotic arms.

The surgeon sits at the console and controls the robotic arms using her own hands. The

console consists of finger loops, joysticks, and foot pedals that allow the surgeon’s movements

to go through the robot. The joysticks require less force to manipulate than standard tools

(Jayant Ketkar et al. 2022), and an adjustable seat and arm support allow surgeons to

adapt the machine to their bodies. The surgical instruments, including a video camera,

are attached to the robotic arms. The robotic arms allow working through incisions much

smaller than those typically required and at a scale where hand tremors pose fundamental

limitations (Tonutti et al. 2017). By increasing articulation, integrating tremor filtering,

and simulating tactile feedback, the system amplifies the surgeon’s dexterity and eye-hand

coordination, leading to a subjective enhancement in surgical performance (Tonutti et al.

2017).

2.2 Robotic Assisted Radical Prostatectomy

Although robots have several applications in surgery, I focus on robotic surgery for prostate

cancer patients (or radical prostatectomy (RP) patients).

Prostate cancer ranks as the second most frequently diagnosed cancer in men globally,

with surgery being among the common treatment options available.1 Because the prostate

is hard to access and is close to many blood vessels and important nerves, surgeons’ skills

play a fundamental role in determining patient outcomes from this surgery.2

Urology is at the forefront of robotic surgery in most countries, and RP is by far the most

commonly performed procedure robotically, both in absolute and relative terms. In the US,

1World Health Organization
2Prostate Cancer Foundation
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for example, the diffusion of robots for prostate cancer surgery has been incredibly rapid.

In 2003, less than 1 percent of surgeons performed this procedure robotically. Seven years

later, 86 percent of the 85,000 men who had prostate cancer surgery had a robot-assisted

operation. Eventually, by 2014, robotic surgery accounted for up to 90 percent of radical

prostatectomies across the US.3 This trend has been similar in England where, by 2018, the

majority of cases (88% percent) were performed robotically (Maynou et al. 2022).

The robot has played a notable role in transforming how surgeons perform RP. Before

robots, prostate cancer surgery was usually performed with an ‘open’ method. In the ‘open’

method, the surgeon makes a single large incision that allows the area of interest to be seen

and operated.4 From an oncological perspective, robotic surgery is equivalent to traditional

surgery; they are both practical to remove cancer when it is confined to the prostate. How-

ever, robotic surgery promised to reduce blood loss, pain, scarring, infections, and average

length of stay (among others) by replacing the practice of cutting patients open with a

technique that involved few small incisions (see Figure II) and minuscule tools.

Among the most significant barriers to adopting robotic surgery in urology and elsewhere

are the high costs of purchasing and maintaining robots (Marcus et al. 2017). The acqui-

sition cost of a da Vinci robot ranges between $0.5 and $2.5 million, depending on model,

configuration, and location (Eckhoff et al. 2023). This does not include the annual service

fee of up to $190,000 or the reoccurring cost of instruments and accessories (Eckhoff et al.

2023). On top of that, robots usually require a dedicated operating room, often built for this

purpose, and both surgeons and nurses also need specialized training. Operating using the

console requires significant coordination between the head surgeon and the assistant working

at the bedside. Any technical drawback during the operation is risky for the patient but also

prolongs operation time and generates inefficiencies for the hospital (Compagni et al. 2015).

3Crew, B., Worth the cost? A closer look at the da Vinci robot’s impact on prostate cancer surgery,
Nature. Retrieved on 22 April 2020 from https://www.nature.com/articles/d41586-020-01037-w

4Other minimally invasive approaches, such as laparoscopy, had also been available before robotic surgery
but had limited popularity because of the problematic position of the prostate. Throughout this paper, I
will refer to all approaches that do not involve using robots as traditional surgery.
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To this day, conclusive evidence on whether the robot is superior at performing RP is

relatively scarce, and doubts remain on whether the supposed benefits outweigh the costs of

this technology (Davies 2022).

3 Data and Institutional Setting

3.1 Data

The data I use come from the Hospital Episodes Statistics (HES), an administrative data

set covering the universe of inpatient discharges from the English National Health Service

(NHS).

From HES, I collect data on all radical prostatectomy patients operated by an NHS

hospital between April 2004 and April 2018. For each of them, HES records the method

used to perform the operation (e.g., traditional or robotic), the consultant in charge, and

the hospital where this was done. This allows me to track how the technology diffuses across

hospitals, surgeons, patients, and over time.5

HES also provides detailed patient demographic and clinical information, including age,

sex, ethnicity, admission date, discharge date, and up to 20 recorded diagnoses and operation

codes. Geographical information, such as the patient’s area of residence, is also available.

Patients maintain their identification codes over time, enabling me to compile their hos-

pital records pre-RP and accurately monitor their post-operative outcomes. By inspecting

the patient hospital history (i.e., admission before the operation of interest), I identify 15 risk

variables deemed by the medical literature to be important parameters of patients’ health

(e.g., heart diseases, diabetes) and likely to influence their outcomes from surgery. From the

data, I also compute the number of admissions before the patient’s surgery, the number of

diagnoses at the time of operation, the time that has passed since their cancer diagnosis, and

5I have access to HES records from 2000 to 2018. Information on the consultant in charge of the operation
is available from 2004. Information on the operation method is available since
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the time they had to wait since their initial referral for the operation (i.e., waiting time).

In Table I, I summarize the characteristics of the patients in my sample separately for the

traditional and robotic approaches. Table II provides the difference in means between robotic

and traditional surgery patients controlling for the year of operation to account for changes

in patient compositions over time. Robotic surgery patients appear to be younger and

significantly healthier (i.e., lower incidence of risk variables). The hospital history variables

also point to the robotic patients being less risky, with fewer prior hospital admissions and

fewer diagnoses at the time of operation. Overall, there appears to be a significant degree of

positive selection into robotic surgery, with healthier patients being operated on using this

technology.

3.1.1 Patient Outcomes as Skill and Performance Measures

The information in HES allows me to reliably measure two patient outcomes. These are

the patient length of stay in the hospital (LOS) and the occurrence of adverse events from

surgery (i.e., negative post-operative outcomes or post-operative morbidity).

I rely on the occurrence of adverse events from surgery to differentiate between high-

and low-skill surgeons before the introduction of robots. My objective is to establish a clear

distinction in skill level, and this outcome is the most salient indicator of surgical skills. I

then identify the effect of the robot on adverse events and length of stay to evaluate whether

the technology has affected surgical performance.

I focus on these outcomes for three reasons. Undoubtedly, patients desire to spend fewer

days in the hospital and minimize complications from surgery. If robotic surgery would

improve these outcomes, patients would clearly benefit from it. LOS and adverse events are

also important cost drivers to the system and are often considered when evaluating whether

a technology is worth adopting (Lotan 2012). Lastly, the medical literature considers that —

if any — robotic technology should have measurable benefits on these two margins (Higgins

et al. 2017, Coelho et al. 2010, Lowrance et al. 2010, Nelson et al. 2007). Robotic surgery
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allows operating using small, compact tools that fit into narrow incisions. The procedure is

consequently less invasive and should, therefore, increase the speed of recovery (or reduce

the length of stay). Further, because these tools allow for higher precision, the incidence of

adverse events, especially surgical complications, should diminish.

The length of stay in the hospital of a patient undergoing surgery can be decomposed into

pre- and post-operative. Pre-operative length of stay refers to the number of days between

the date of admission and the date of operation. This is believed to be primarily determined

by hospital management and should reflect efficiency rather than performance (Cooper et al.

2010). Post-operative length of stay refers to the number of days a patient spends in the

hospital after surgery. A shorter post-operative stay suggests the patient recovered quickly,

while a prolonged one may indicate complications in the operating theater (Strother et al.

2020). I concentrate on the effect of robots on postoperative length of stay, which I measure

for each patient as the number of days between the operation date and the date of discharge.

Adverse health events serve as a critical indicator of the quality of the procedure per-

formed. I consider a broad range of events to be part of this category, including in-hospital

deaths (within 30 days), emergency readmissions (within 30 days), and the occurrence of

surgical complications. This last category is specific to RP patients. It includes urinary com-

plications, and erectile dysfunctions that require further surgical interventions6, and blood

transfusions. Urinary complications and erectile dysfunction, measured within two years of

the operation, are common side effects of prostate cancer surgery and are often employed

to measure surgical performance for this operation (Hugosson et al. 2011, Hu et al. 2003,

Fowler Jr et al. 1995). Blood transfusions are typically associated with surgical complications

and are frequently used as a quality indicator (Porcaro et al. 2022).

Table I summarizes the outcomes by surgical approach. The average post-operative

length of stay in hospital is 4 days for traditional surgery and 1.9 for robotic surgery. Urinary

complications are the most common category of adverse events, while death and readmissions

6I will not be able to detect erectile dysfunctions that are treated with pharmaceutical interventions with
the data I have.
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are extremely rare. Adverse events are almost twice as likely to occur with traditional surgery

than with the robot (19% vs 8% with robotic surgery). These differences are also statistically

significant when comparing patients operated in the same year as in Table II.

3.2 Institutional Setting

The NHS is the second-largest single-payer healthcare system in the world. Hospitals in

the NHS provide care to patients and are reimbursed by the government under nationally

agreed tariffs. Access to planned or elective procedures is rationed through waiting times

and requires an initial referral from a General Practitioner (GP).

A patient in the NHS suspected of having prostate cancer would be referred by their GP

to a specialist center for diagnosis. Following diagnosis, patients receive comprehensive infor-

mation about all treatment options, including surgical intervention if the tumor is confined

to the prostate. Both robotic and traditional surgical approaches are typically presented and

discussed, including the advantages and disadvantages of each technique. If the patient’s lo-

cal provider does not offer robotic surgery, they can request a referral to a hospital where

it is available (Coulter 2010). Hospitals cannot refuse patients but may schedule admissions

or cancel treatments if there is a lack of capacity.

In the context of RP surgeries, robotic surgery began gaining popularity in the English

NHS around 2007. Figure IV illustrates both the total number and the proportion of RPs

performed by the two different surgical approaches. Notably, the use of robotic surgery

increased from 5 percent in 2007 to 80 percent in 2017.

Since 2006, the NHS constitution has guaranteed patients the right to choose where they

receive treatment, ensuring fair access to resources for all. However, this principle has not

consistently ensured the same level of accessibility in the context of robotic surgery. The

adoption of the Da Vinci system occurred in a scattered and uncoordinated manner, leading

to significant variation in the availability of robots across regions and over time (Lam et al.

2021). Figure V shows the location of hospitals adopting the robot by time of adoption, as
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identified from the HES data. Twenty-three hospitals adopted the robot before 2011, another

23 between 2011 and 2014, and seven adopted it after 2017. Meanwhile, 100 hospitals offering

RP surgery never adopted the robot during the observation period. The decision to adopt

this technology was left to the individual hospital; surgeons were not mandated to learn

how to use it, and it took nearly 14 years to develop any clinical guidelines and a national

plan for the rollout of the robot (Maynou et al. 2022). This delay was largely attributed to

uncertainty regarding the machine’s benefits.

4 Measuring Surgical Skills

Skills are not directly observable and notoriously difficult to measure. The measurement most

commonly called upon in economics is some indicator of educational attainment (Borghans

et al. 2001). Still, when all those performing a job must have the same level of education, this

approach is infeasible. In some occupations, however, the product of one’s work is observable,

and its quality can be attributed to the individual’s skills. For example, Birkmeyer et al.

(2013) shows a clear relationship between surgical skills and patient outcomes.

When using outcomes to compare surgeons, it’s essential to recognize the influence that

risk factors and other patient characteristics play. In fact, some form of risk adjustment is

necessary to account for the fact that different surgeons operate on different patient popula-

tions. The procedure I use to produce a single risk risk-adjusted indicator of skills proceeds

in two steps.7 In the first step, I estimate a random coefficient model with a surgeon ran-

dom intercept. In the second step, I use the regression estimates to compute a surgeon-level

Standardized Risk Ratio (SRR) of postoperative outcomes, which I use as my skills measure.

This approach helps to mitigate differences in health and other risk factors that impact ob-

served outcomes across surgeons and generates a comparable indicator of skills that I can

use to categorize surgeons.

7This methodology is inspired mainly by the work of Horwitz et al. (2014) for the Centers for Medicare
& Medicaid Services (CMS)
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4.1 Risk Adjustment Methodology

The surgeon random intercept model allows me to quantify the variation in outcomes across

surgeons that the observable patient characteristics cannot explain. This is the surgeon’s

specific contribution to the patient’s outcome, which should reflect their skills.

Let Yij for patient i operated by surgeon j denote a binary outcome equal to one if the

patient experiences an adverse event from surgery. Xij denotes a set of risk factors identified

by the medical literature to influence the outcome of patient i which are observed in the

data. I assume that the outcome is related linearly to the covariates via a logistic function

F (·) with its conditional distribution assumed to be Bernoulli:

Prob (Yij = 1) = F (αj + βXij)

αj = µ+ ωj

ωj ∼ N (0, σ2)

(1)

Here, αj represents a surgeon-specific intercept, µ is the adjusted average outcome across

all surgeons, and ωj is the random component allowed to result from an unknown process.

The estimation’s objective is σ2, the variance of the surgeon random effect distribution or

the between surgeons variance. This component represents the surgeons’ unique contribution

to the overall variance in patient outcomes. From σ2, αj, the empirical Bayes estimate of

the individual surgeon effect, can be obtained using the Bayes posterior means method.

4.2 Standardized Risk Ratio

I use the model estimated parameters to compute a surgeon-specific ratio of predicted and

expected patients’ postoperative morbidity or adverse events (Horwitz et al. 2014).

LetMj denote the set of patients operated by surgeon j. The predicted number of adverse

events for surgeon j follows from the conventional definition of prediction. It is calculated

as the sum of the predicted probability of the event for each patient i ∈ Mj using the model
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estimated parameters β̂ and the Empirical Bayes estimate α̂j.

Ŷj =
∑
i∈Mj

logit−1
(
α̂j + β̂Xij

)
(2)

The expected number of adverse events is more nuanced. This is calculated as the sum

of the predicted probability for each patient i ∈ Mj, ignoring the estimated surgeon-specific

random effect α̂j. That is the probability of an adverse event given the estimated parameters,

but where σ is set to zero. Or, equivalently, the probability of an adverse event when the

dispersion in αj is zero.

Ỹj =
∑
i∈Mj

logit−1
(
µ̂+ β̂Xij

)
(3)

The SRR of surgeon j is then the ratio of these two estimates:

SRRj =
Ŷj

Ỹ
(4)

The ratio summarizes whether a surgeon is doing better or worse than we would expect

given her pool of patients. A value of 1 indicates that surgeon j’s level of adverse events is

as expected, given her patients. A value above (below) 1 suggests that the surgeon is under-

(over-) performing relative to an average surgeon with a comparable population of patients.

I use the SRR as a continuous skills measure in the analysis, with lower values indicating

higher skills. Alternatively, I create a binary indicator of skills that takes value 1 if the SRR

is below the median of its distribution and 0 otherwise.

4.3 Measure Validity and Estimation

The validity of the SRR as a measure of skills relies on the model effectively managing

omitted variables and unobserved heterogeneity.
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First and foremost, I want the measure not to be affected by the surgeon’s technology

use. For this reason, I estimate the SRR and the model behind it using data from 2004

to 2007, a period before the diffusion of robots, as observed in my sample. By focusing

on when all operations are performed with the traditional method, the outcomes are not

endogenous to the surgeon’s technology use and reflect the surgeon’s stock of skills ahead of

the introduction of robots.

Generally, I also want to exclude that the heterogeneity I attribute to the surgeon’s

random component arises from patient composition or hospital quality. I produce three

versions of the SRR that reflect different restrictions on the variability in outcomes I allow

to be ascribed to the surgeon’s random component. Eventually, I will use all of them to test

the robustness of my results to my design choices.

To account for unobservable heterogeneity in the patient population across surgeons,

I include a large set of observable patient risk factors and demographic characteristics in

the risk adjustment model. Further, I control for the area where the patient lives. This

substantially reduces the estimated between-surgeon variance parameter, which drops by

about 40 percent, as shown in Table III. Indeed, much of the variation at the tails of the

distribution stemmed from unobserved heterogeneity within the RP patient population (see

Figure III). I call the SRR obtained using postal area fixed effects srrPOST .

I need to acknowledge that patient outcomes may also be shaped by the hospital, its

environment, and the quality of the care team (e.g., nurses and healthcare assistants). For

this reason, I alternatively control for the hospital in which the surgeon operates. Many

hospitals count multiple surgeons so that we can estimate the surgeon’s random effect sepa-

rately from the hospital’s fixed effect. This reduces the variability in outcomes explained by

the surgeon-specific random effect by 80 percent. This notable shift in the surgeon variance

should be considered as the compound effect of accounting for both time-invariant differences

in hospital quality and the characteristics of the patient population treated. Nevertheless,

the estimated variance remains statistically significant, suggesting that hospital quality and
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patient characteristics account for only a portion of this variability. I call the SRR obtained

using hospital fixed effects srrHOSP .

If more severely ill patients are admitted to hospitals with higher quality surgeons, but

my model fails to capture their level of illness accurately, my measure would be incorrect.

Including hospital controls captures differences in outcomes that may result from this type

of patient selection across healthcare providers. Still, it may be that within a hospital, more

severely ill patients are assigned to the most skilled doctor. As a further check, I estimate

the model using data on patients admitted via the emergency department (ED). The nature

of emergency admissions allows me to exclude this type of selection conclusively: emergency

patients are operated by whoever is on call and free at that time. In this case, however,

I estimate the model using all surgical urology patients because RP is rarely done in an

emergency setting. I call the SRR obtained using hospital fixed effects and estimated using

ED patients srrED. Variation across surgeons in this sample is substantially lower, partly

indicating that selection is less salient. This may, however, also result from the operations

performed in emergency being less complex and, therefore, less likely to show off the surgeon’s

skills.

5 Econometric Strategy

In this Section, I present my parameter of interest and explain the assumptions I need to

identify it within the MTE framework. I then describe the variable I use as an instrument

and discuss its validity.

5.1 Parameter of Interest

Understanding whether the returns from using the robot depend on the surgeon’s skills

involves a significant challenge in terms of identification. On the one hand, I have endogeneity

driven by the patient-surgeon’s choice of technology. On the other hand, I have to consider
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that outcomes may systematically differ along the skill distribution because of patients’

characteristics.

To formalize the problem, I assume there are two types of surgeons, high and low-skill,

and abstract from any control variables. Ideally, I would want to estimate the following

equation:

Y = α + βDR + γDH + τDRDH + ϵ (5)

where Y is the observed patient outcome (e.g., mortality), DR is an indicator variable that

equals one if a robot has been used, DH indicates whether a high-skill surgeon operated on

the patient, and ϵ is an idiosyncratic error term.

The parameter of interest is τ , the interaction between the skills and the robot, which

captures the complementarity between the technology and the human capability. This pa-

rameter is identified by the following difference in average treatment effects:

τ = E[∆H −∆L] (6)

where ∆H ≡ Y R
H − Y T

H is the difference in outcomes between robotic (R) and traditional

surgery (T) for a high skill surgeon (H), and ∆L ≡ Y R
L − Y T

L is the same difference for a low

skill surgeon (L).

5.2 Identification Challenge

Estimating τ requires finding a sample equivalent of the difference in outcomes between

robotic and traditional surgery, ∆S, for each skill level S ∈ (H,L).

If patients were randomly allocated to surgical approaches (traditional or robotic) and

surgeons (high and low-skill), the following equality would hold :

∆S ≡ E[Y R
S − Y T

S ] = E[Y R
S |RS]− E[Y T

S |TS]

= E[Y |RS]− E[Y |TS] ∀ S ∈ (H,L)

(7)
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In Equation 7, RS and TS indicate the type of surgery, robotic or traditional, performed by

a surgeon of skills S. Because of random assignment, the outcome is independent of whether

the patient actually receives one or the other surgical approach and an OLS regression would

be enough to get an unbiased estimate of my parameter of interest from Equation 5.

In my context, however, treatment assignment is non-random, and patients may receive

one or the other surgical approach because of their characteristics, some of which may be

unobservable.8 The possibility of systematic differences between robotic and traditional

surgery patients may result in the OLS being biased:

E[Y |RS]− E[Y |TS] = E[∆S|RS] + E[Y T
S |RS]− E[Y T

S |TS]︸ ︷︷ ︸
treatment selection bias

∀ S ∈ (H,L) (8)

Moreover, even in the absence of selection into the robotic treatment, comparing treat-

ment effects across different surgeon types would generally be invalid, as surgeons of different

skills operate on potentially different patients, i.e., the treated population would not be com-

parable across skills.

E[∆H |RH ]− E[∆L|RL] = E[∆H −∆L|RH ] + E[∆L|RH ]− E[∆L|RL]︸ ︷︷ ︸
skill selection bias

(9)

In this case, the selection bias will depend on the distribution of patients across surgeons.

For example, if high-skill surgeons operate on a population where the robot is particularly

effective, we would overstate the complementarity between the robot and surgical skills.

On the contrary, if this was true for the low-skill surgeons, we would underestimate the

importance of skills for the technology returns.

8In this discussion, I refer to the robotic approach as the treatment. The untreated state refers to a state
where the patient is operated with traditional surgery.
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5.3 Identification Strategy

To deal with this complex identification problem, I model the patient-surgeon decision be-

tween alternative treatments as in Roy (1951). This is not the surgeon’s decision to adopt

the robot but should be rather thought of as the result of a consultation between the pa-

tient and the surgeon regarding the treatment option that best suits the patient. Within

this model, I impose a standard conditional independence assumption between the observed

and unobserved components that determine the returns from treatment, which allows me to

compare treatment effects across skills. Under this assumption, I show that my parameter of

interest is a trivial component of the MTE of receiving robotic relative to traditional surgery.

5.3.1 Discrete Treatment Choice

I take the choice of treatment (robot vs. traditional surgery) to be the result of a joint

decision of the patient and the surgeon, which I represent in a generalized Roy model for

discrete choices (Roy 1951, Heckman & Vytlacil 2007).

The model consists of two potential outcomes, Y R and Y T , and a binary indicator R

that summarizes the treatment status. For notational simplicity, I omit the patient and

surgeon identifier. Y R denotes the potential outcome if the individual was treated with the

robot (R = 1), and Y R denotes the potential outcome if the individual was treated with

traditional surgery (R = 0). The observed outcome Y can be written in switching regression

form (Quandt 1958):

Y = R Y R + (1−R) Y T (10)

The potential outcomes, for which I impose a linear structure, depend on the surgeon’s skills,

S, and patient characteristics, X. For now, I take S to be a continuous variable.

Y R = τRS + µRX + UR

Y T = τTS + µTX + UT

(11)
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Combining Equations 12 and 11 we get that:

Y = τTS + µTX +R (τR − τT ) S + (µR − µT ) X + (UR − UT ))︸ ︷︷ ︸
∆

+ UT (12)

where the individual treatment effect ∆ depends on both observed, S andX, and unobserved,

UT and UR, components.

Patients and surgeons compare the outcomes of each treatment alternative and opt for

the one with the highest surplus. As in Roy (1951), this process is represented by latent

index crossing model, where the latent part in this selection equation is interpreted as the

expected net utility of treatment (Vytlacil 2002).

R = 1[γ(Z) > V ] where Z = (S,X,Z∗) (13)

Whether the patient is operated on with the robot may depend on all the same observable

factors likely to influence the outcomes, including the surgeon’s skills. The commonality of

variables with the outcome equation explicitly allows treatment choice to be based on the

patient’s expected returns from treatment, which may vary depending on the surgeon. Z also

contains at least one excluded continuous variable Z∗ that affects the patient’s probability

of getting the treatment but does not directly impact the outcomes. I will discuss Z∗ in

Section 5.4.

V is an unobservable negative shock to the latent index, typically called unobserved

resistance to or negative preference for treatment (Zhou & Xie 2019). V is assumed to

have a continuous distribution so that we can rewrite Equation 13 as R = 1[P (Z) > UD],

where UD represents the quantiles of the distribution of V and P (Z) ≡ Pr(R = 1|Z) is the

propensity score. The individual gets the treatment whenever the propensity score P (Z)

exceeds UD, which, by construction, has a uniform distribution in the population (Carneiro

et al. 2011).
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I do not restrict the relationship between UR, UT , and V , so the treatment choice may be

endogenous to the unobserved components. However, I assume additive separability between

observed and unobserved heterogeneity in treatment effects (Brinch et al. 2017).

Assumption 1 Additive Separability, ∀ S ∈ (H,L)

E[UR|S,X,UD] = E[UR|UD]

E[UT |S,X,UD] = E[UT |UD]

Assumption 1 allows treatment effects to vary by the observable, S and X, and unobservable

component, UR and UT , but not the interaction of the two terms. Although restrictive, this

assumption is much looser than what is usually assumed by most of the instrumental vari-

able literature (Brinch et al. 2017). This assumption excludes the possibility that selection

across surgeons is systematically correlated with the unobserved returns from robotic surgery

and allows for a comparison of treatment effects across surgeons’ skills, conditional on the

individual quantile of resistance to treatment UD.

5.3.2 Marginal Treatment Effect

Under Assumption 1, and the structure of the Roy model, my parameter of interest τ is

a trivial element of the Marginal Treatment Effect (Heckman & Vytlacil 1999, 2001, 2005,

2007).

MTE(s, x, u) = E[Y R − Y T | S = s,X = x, UD = u]

= (τR − τT ) s+ (µR − µT ) x+ E[UR − UT | UD = u]

= ∆τs+∆µx+ E[UR − UT | UD = u]

(14)

The MTE is the expected treatment effect conditional on observed covariates and the

normalized latent variable UD. For each quantile of resistance to treatment in the sam-

ple, some individuals would be treated, and some would not. The MTE arises then from
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comparing outcomes between treated and untreated individuals with equivalent observable

characteristics and level of resistance to treatment.

This parameter, initially developed by Björklund & Moffitt (1987) and popularized by

Carneiro et al. (2011), can be estimated by Local IV (LIV) (Carneiro et al. 2011). The

intuition is simple. Increasing the propensity score by a small amount shifts previously in-

different individuals into treatment and induces a change in the observed outcome that can

be attributed to the treatment effect, that is the marginal treatment effect. Alternatively, as

suggested in Heckman & Vytlacil (2007), the MTE can be estimated using the separate ap-

proach, which has the benefit of estimating all the parameters of both the potential outcomes

so that I can plot these over the distribution of the unobserved resistance to treatment. I

follow this method and estimate the MTE using the separate approach under a normality

restriction on the unobserved components (Andresen 2018).

5.4 Exogenous variation in treatment probability

The MTE framework requires at least one continuous variable included in the selection

equation but excluded from the outcome equation (Heckman & Vytlacil 2005). The absence

of a centralized strategy for the acquisition of robots in England resulted in significant

disparities in access to robotic surgery, both across geography and over time, which I leverage

to create this instrument.

5.4.1 Instrument Definition

In their seminal contribution, McClellan et al. (1994) use differential distances to alterna-

tive types of hospitals as independent predictors of how heart attack patients will be treated.

More recently, Card et al. (2019) employed the relative distance from a mother’s home to the

nearest high c-section hospital versus the nearest low c-section hospital as an instrumental

variable for delivery at a high c-section hospital. The idea is that geographic distance ran-

domizes patients to different likelihoods of receiving treatment but, unlike absolute distance,
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is not expected to be correlated with health or other factors affecting patient outcomes and

treatments.

Inspired by this body of work, I use the differential distance from the patient’s residence

to a hospital capable of providing robotic surgery as an instrument. I refer to the differential

distance instrument as Zdist, and I compute it for each patient as:

Zdist = dR − dT , (15)

dR is the geographic distance in kilometers between the patient and the nearest hospital with

a robot when the patient is operated, and dT is the geographic distance between the patient

and the nearest hospital.

Data on where a patient lives in HES is limited to the postal area, but HES includes

information on the patient’s GP. Hence, I use the patient’s GP’s postcode to proxy for his

location. In England, individuals must register with a GP to obtain a referral necessary to

access non-emergency services from hospitals. Patients can only register at GP practices

near their home address, so the GP’s postcode is a good proxy for the patient’s location.

5.4.2 Instrument Validity

As in Imbens & Rubin (1997), the instrument should only affect patients’ outcomes through

its effect on the probability of receiving robotic surgery. Firstly, I want to exclude that

patients living relatively closer to a robotic hospital are just in better health than those

living far away. Secondly, I want to rule out the possibility of ‘correlated beneficial care’,

where the availability of the treatment of interest may be correlated with other hospital

practices or characteristics that can affect health outcomes independently (Card et al. 2019,

Doyle Jr et al. 2015, McClellan et al. 1994).

Unobserved Patient Heterogeneity: To mitigate the first concern, I include in the

selection equation an extensive set of observable patient characteristics, but I also directly
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control for the area where the patient lives. In this way, I only leverage the instrument

variation within narrowly defined geographic locations. This represents a significant step

forward compared to previous studies utilizing this instrument, for which typically relative

distance is constant in time.

As illustrated in Figure VI, the average relative distance for my sample of prostate cancer

patients was 61 kilometers in 2007, declining to 25 in 2012, and further diminishing to 7 by

2017. This trend arises from hospitals’ gradual adoption of robotic technology, which induces

changes in relative distance for individuals residing in the same area depending on the date

of their cancer diagnosis.

Nevertheless, it may still be that relative distance is correlated to health outcomes in a

way not accounted for by the model. To investigate the plausibility of such a story, I test

whether relative distance to a robotic hospital can predict the health outcomes of individuals

who had a heart attack (clinically referred to as an Acute Myocardial Infarction or AMI).

The treatment of AMI does not involve robotic surgery, and for this reason, relative distance

should have no relationship with the health outcomes of patients with this condition. But,

if there was non-random sorting of individuals across locations in such a way that relative

distance was correlated with better (or worse) health, this would surely emerge in this

relationship.

I focus on AMI patients for two reasons. First, cardiovascular diseases, of which AMI is

the primary manifestation, have a high mortality rate and, therefore, a well-defined health

outcome to test for. Second, mortality from AMI is often associated with poverty or low

access to social support (Mookadam & Arthur 2004). This means that AMI mortality can

serve as a proxy for both individuals’ health and physical well-being and for economic and

social risk factors.

Table V presents the results for this test. The coefficients are estimated from a logistic

regression where the dependent variable is hospital death, and the independent variable

of interest is the instrument Zdist computed for my sample of AMI patients admitted via
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the emergency department from 2009 to 2014. As in Card et al. (2019), I control for the

distance from the nearest hospital to the patient’s residence to account for disparities in care

accessibility. Standard errors are clustered at the patient postal area level. Relative distance

to a robotic hospital is not statistically significant for AMI patients outcomes regardless

of the set of controls in the model, suggesting no systematic association with any health

determinant. This remains true regardless of whether I use relative distance as a continuous

predictor or as a dummy variable.

Correlated Beneficial Care: To address the possibility of correlated beneficial care, I

show that a patient’s relative distance to a hospital offering robotic surgery is only predictive

of surgical outcomes when the hospital has, in fact, adopted the robot. In other words, I

show that being relatively closer to a hospital that will eventually adopt the robot cannot

predict an RP patient outcome from surgery. If robotic adoption was correlated with other

beneficial practices, the patient relative distance to a hospital that adopts in t + n should

affect the outcomes of patients operated in t as long as n is small enough.

I implement this test as follows. For each RP patient operated in t ≤ 2010, I compute

Z2010
dist that is their relative distance to a hospital offering robotic surgery n periods after.

Then, I estimate the relationship between Z2010
dist and the outcomes of patients in 2006, 2007,

2008, 2009, and 2010. Notice that for the patients in 2010, this is effectively a reduced form

estimate of the relationship between robotic surgery and patient outcomes. I take t ≤ 2010

as my test years because robotic surgery then was relatively scarce, and we can find many

patients for which there was a significant change in relative distance in 2010. However, these

years are close enough to 2010, so practices would not have changed significantly.

I present the results in Table VI. I find no statistically significant relationship between

Z2010
dist and the outcomes of patients in the preceding years. On the contrary, for 2010, the

coefficient is positive and statistically significant, indicating for a unit increase in relative

distance to a hospital that actually offers robotic surgery, we expect an increase in post-
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operative length of stay of 0.2 percent. Similarly, a unit increase in relative distance results

in a 0.6 percent increase in the odds of experiencing an adverse event from surgery for the

2010 sample.

5.4.3 Relevance, Monotonicity, and Common Support

I establish that the instrument is relevant in Figure VII. In the left panel, I show a non-

parametric representation of the relationship between the endogenous variable, robotic surgery,

and the instrument, relative distance, conditional on year and postal area controls. In the

right panel, I plot the predicted probability of robotic surgery from a logistic regression,

whereas on the right side, I have relative distance, year, and postal area dummies.

What emerges is a clear negative correlation between the probability of robotic surgery

and the instrument. The model predicts that when the patient’s nearest hospital offers

robotic surgery, he has a 60 percent probability of being operated with the robot. Having to

travel 10 km more reduces this probability by 6 percentage points. For a relative distance

above 100 km, the patient has a 10 percent probability of getting the robot. On average, a

1 km increase in the patient’s relative distance decreases the probability of having robotic

surgery by 0.004 percentage points.

For the instrument to be valid, there should also be no defiers (Imbens & Rubin 1997).

In our context, it is actually unlikely that an individual would be more prone to receive

traditional surgery when relatively closer to a hospital offering the robot. To corroborate

that this is actually the case, I estimate the relationship between robotic surgery and the

instrument for different subgroups of patients. I do this for individuals above and below the

median age, the median Charlson Comorbidity Index (CCI), white individuals, and those

from other ethnic backgrounds. I present the coefficients estimated using a logistic regression

in Table VII. Reassuringly, Zdist always has a negative coefficient, indicating that increasing

the relative distance to a robotic hospital weakly decreases the likelihood of undergoing

robotic surgery regardless of the group of patients I focus on.
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Finally, the instrument should induce sufficient variation across observable characteristics

to generate a propensity score, P (Z), with full common support (i.e., support in the unit

interval for treated and untreated individuals). This requirement is specific to the MTE

framework and is needed to ensure the possibility of computing a reasonable estimate of the

Average Treatment Effect (ATE). In Figure VIII, I present the unconditional support jointly

generated by the instrument and covariates. The instruments create a common support in

the estimated propensity score that spans virtually the full unit interval.

6 Results

6.1 Skills and technology gains

In Table VIII and IX, I give the estimates based on Equation 14 for my three alternative

measures of surgical skills (i.e., the SRR), in both a continuous and binary version. The

SRR, derived using the risk adjustment methodology from Section 4, should be understood

as negatively correlated with skills, meaning that high-skill surgeons will have a lower SRR.

The binary version uses the SRR to establish a cutoff between high and low-skill surgeons.

Surgeons with an SRR above the median are considered low-skill, while the rest are consid-

ered high-skill.

In all specifications, I control for the patient demographic characteristics, 15 risk vari-

ables, hospital history, the patient postal area, and year of operation fixed effects. The

controls are included both as stand-alone variables and interacted with the propensity score

P (Z) to allow for heterogeneity in treatment effects. The exception is the postal area, which

I restrict to have the same effect in the treated and untreated state. The indicator of whether

the patient undergoes robotic surgery is instrumented using Zdist while also controlling for

the distance of the nearest hospital to the patient residence.

The performance measure in Table VIII is a binary indicator of adverse events. Panel (A)

presents the relationship between surgical skills and patient outcomes when the operation is
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performed with traditional surgery (i.e., τT in Equation 14). Panel (B) shows the coefficients

on the variables interacted with the propensity score, which tell us how the treatment effects

differ by skill level (∆τ in Equation 14) and speak directly to the possibility of skill bias.

In Panel (A) of Table VIII, the results suggest a clear positive relationship between the

surgeon’s skills, measured with the SRR, and performance in the untreated state. With

traditional surgery, the surgeons I identify as high-skill with my risk-adjusted indicator

perform better than the rest. For both srrPOST and srrHOSP , a one standard deviation

increase in the skill measure is associated with about a 3 percentage points change in adverse

events. The coefficient on srrED is also positive but not statistically significant.

In Panel (B) of Table VIII, the results indicate that high-skill surgeons do not benefit

significantly from using the robot, whereas low-skilled surgeons experience the most notable

improvement in their performance. A higher SRR (lower skills) is associated with a greater

performance improvement from using the robot. The coefficients on the continuous skill

measure interacted with the propensity score are negative and statistically significant for

srrPOST and srrHOSP .

Figure IX provides a more intuitive representation of this result. In the figure, I plot

the coefficient for the binary measures in the treated state next to the coefficient interacted

with the propensity score. For the coefficient on (1[srrPOST < p(50)]) in the untreated

state, a switch from a high-skill to a low-skill surgeon induces a change in the probability

of an adverse event from surgery of 6 percentage points. The difference in treatment effects

with this skill measure is estimated to be about the same magnitude but positive so as to

favor the low-skill surgeons. This implies almost no difference in the treated state (robotic

surgery) between high and low-skill surgeons. The same result holds true when I focus

on (1[srrHOSP < p(50)]). According to this skill measure, there is a 5 percentage point

difference between low and high-skill surgeons in the untreated state. This difference is close

to 0 in the treated state because of a difference in treatment effects of 0.4.

The same results hold in Table IX when I focus on postoperative length of stay as my
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performance measure. The coefficient interacted with the propensity score is negative for

the continuous skill measure, indicating that low-skill surgeons gain the most from using the

robot as the estimated difference in treatment effects implies a much stronger reduction in

postoperative length of stay relative to their high-skill counterparts. The coefficient on the

binary skill measure is consistent with this idea, although not statistically significant in all

specifications.

Overall, the findings suggest a leveling effect of the technology. While significant differ-

ences exist between high and low-skill surgeons in traditional surgery, these gaps notably

diminish with the robotic technology. This is true for both outcomes and irrespective of

the skill measure I use in the analysis. The benefits derived from using the robot primarily

accrue to low-skill surgeons, as shown by the positive difference in treatment effects. The gap

between high and low-skill surgeons is much smaller when using the robot. This points to

limited complementarities between the robotic technology and the skills required to perform

traditional surgery successfully. There is no skill premium here, and the technology is biased

toward the low-skill.

6.2 Selection equation

I have established that low-skill surgeons benefit the most from using the technology. Their

returns from using the robot are higher both in terms of adverse events and postoperative

length of stay. The selection equation suggests, however, that their use of the robot is much

lower than that of their high-skill counterparts.

Table X presents the estimates from Equation 13, i.e., the selection equation. The de-

pendent variable is a binary indicator of whether the patient has been operated with robotic

surgery. The model controls for the patient demographic characteristics, 15 risk variables,

hospital history, year, and postal area fixed effects. The instrument Zdist and the patient

distance to the nearest hospital are also included.

The estimates show that surgical skills significantly determine whether a patient under-
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goes robotic surgery. The relationship is statistically significant, but the odds ratio (i.e., the

exponentiated coefficient) for the SRR is below 1, indicating that the likelihood of using the

robot decreases as this variable increases. Conversely, for the binary skill measure, the odds

ratio is above 1, indicating that patients of high-skill surgeons (1[srrHOSP < p(50)]) have

higher odds of being operated on with the robot.

This result implies negative selection on gains, whereby those who have the highest return

from the treatment, the patients of the low-skilled surgeons, are less likely to get it. Relative

to their returns, low-skill surgeons appear to underuse the robot, limiting this technology’s

potential impact.

6.3 Returns to treatment based on unobserved characteristics

The estimated MTE curves under the assumption of joint normality of the error terms

are shown in Figure X and XI. I do not find significant heterogeneity in effects, based

on unobservable characteristics, for the adverse event outcome. The estimated marginal

treatment effects, plotted at the mean of X in the sample, show a flat curve over the quantiles

of resistance to treatment. For postoperative length of stay, I find a pattern of positive

selection of gains. The individuals at the lowest quantile of resistance to treatment have

the largest reduction in length of stay when using the robot. The separate approach shows

that The estimated expected outcome with the robot is a flat line over the resistance to

treatment; the robot is equalizing the outcomes of more and less resistant patients in the

treated state.

6.4 Conventional and policy relevant treatment effects

I show the conventional treatment effects parameters in Table VIII and IX, which I compute

by appropriately integrating over the MTE curve. The introduction of the robot significantly

enhances the performance of surgeons. The Average Treatment Effect (ATE) is negative

and statistically significant, indicating that, on average, the robot reduces postoperative
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morbidity by 10 percentage points and shortens the postoperative length of stay by about

45 percent. For adverse events, the Average Treatment on the Treated (ATT), the Average

Treatment on the Untreated (ATUT), and the Local Average Treatment Effect (LATE) are

all very similar to the ATE. Regarding postoperative length of stay, the ATT is more negative

than the ATE, which is consistent with the idea of positive selection into treatment. The

LATE parameter is even more negative, suggesting that individuals persuaded into robotic

surgery by a change in the instrument experience substantial benefits from the treatment.

I have shown that the low-skill surgeons have the highest returns but use the technology

the least. Hence, a natural question is how much are we losing from this behavior? As a

conclusive exercise, I exploit the structure of the model to conduct a policy simulation that

allows me to answer this question. Following Heckman & Vytlacil (2005), Carneiro et al.

(2011), I consider a class of policies that change P (Z), the probability that the patient is

operated with the robot, but that do not affect the potential outcomes or the unobservable

characteristics in the model. Heckman & Vytlacil (2005) show how to compute the Policy

Relevant Treatment Effect (PRTE), the mean effect of going from the baseline policy to an

alternative policy per net person shifted into treatment.

I estimate the PRTE for a counterfactual scenario in which I assign low-skill surgeons

the same probability of using the robot as the high-skill surgeons. Basically, I evaluate the

average performance effect of the robot if the low-skill surgeons were mandated to use the

technology with the same intensity as the high-skill ones. This policy simulation speaks to a

hypothetical counterfactual in which the barriers that limit the use of the robot by low-skill

surgeons were lifted. Suppose surgeons use the robot on a patient only when the expected

benefit from treatment is above a certain threshold, aligning with the principles of the Roy

model of treatment choice. However, less skilled surgeons either misconstrue the benefits

or apply an incorrect threshold, resulting in the underutilization of the treatment. Then,

this policy counterfactual shows what would happen to the average treatment effect if the

low-skill surgeons had the same threshold to use the robot as the high-skill surgeons.
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The results of this exercise are shown in Table XI for both margins of performance. The

PRTE is always more negative than the ATE, indicating that inducing low-skill surgeons to

use the robot more intensively would generate larger gains from the adoption of robots. This

is particularly evident for adverse events. For example, in Figure XII, I show the shift that

would occur in the MTE curve from this policy when using srrPOST as my skill measure. The

PRTE is almost five percentage points lower than the ATE I have estimated. This additional

reduction in adverse events is lost because of the underutilization of the technology by the

low skill surgeons.

7 Discussion and Conclusion

In this paper, I presented evidence that robotic surgery has a positive effect on surgeons’

performance. Patient post-operative length of stay and morbidity diminish when the robot

is used relative to traditional techniques. I have shown, however, that these effects are highly

heterogeneous and significantly depend on the skills of the surgeon using it. The low-skill

surgeons benefit the most from using the robot, while high-skill surgeons benefit the least.

Thus, the technology appears to be skill-biased.

My interpretation is that the skill bias arises because the robot effectively takes over

specific challenging tasks that were traditionally carried out by surgeons. For example, the

task of holding the instruments is now left to the robot. By substituting the surgeon in these

critical functions, the robot levels the playing field, enabling low-skill surgeons to achieve a

performance closer to that of their high-skill counterparts. The relative advantage of high-

skill surgeons diminishes, as the technology takes over the very tasks that previously set

them apart.

However, even with the robot, significant differences persist between high and low-skill

surgeons. They utilize the technology differently. Low-skill surgeons do not use the technol-

ogy to its full potential and actually underuse it despite the significant benefits it offers to
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them. This behavior could stem from incorrect beliefs about the returns, a lack of comfort

with the technology, insufficient training, or reluctance to fully integrate it into their practice

for other reasons. Consequently, the benefits of this technology are not fully realized.

In a broader sense, the results of this paper suggest that the adoption of this technology

in surgery will have important consequences for the future of work in this profession. The

possibility of operating with the robot will likely change the profile of the individuals working

in this job, as the skills traditionally required from surgeons appear to matter less for their

performance. Importantly, this shift may also alter the trajectory of a surgeon’s career.

While a surgeon’s professional journey historically hinged on their physical prowess and was

constrained by the inevitable decline that accompanies aging, this dynamic may no longer

hold true. Only time and research will tell.
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Tables

Table I: Characteristics of radical prostatectomy patients

(1) (2)
Traditional Robotic

mean sd min max mean sd min max

Demographic Characteristics
Age 63.570 6.847 16 98 62.865 6.617 20 82
White 0.740 0.439 0 1 0.644 0.479 0 1
Rural-urban indicator 5.388 0.933 1 9 5.434 1.047 1 9

Risk Factors
Acute myocardial infarction 0.020 0.140 0 1 0.024 0.153 0 1
Congestive heart failure 0.007 0.081 0 1 0.006 0.078 0 1
Peripheral vascular disease 0.012 0.110 0 1 0.012 0.110 0 1
Cerebrovascular disease 0.010 0.101 0 1 0.011 0.104 0 1
Dementia 0.001 0.033 0 1 0.001 0.029 0 1
Chronic obstructive pulmonary disease 0.089 0.285 0 1 0.105 0.307 0 1
Rheumatoid disease 0.011 0.103 0 1 0.013 0.113 0 1
Peptic ulcer disease 0.010 0.102 0 1 0.014 0.116 0 1
Mild liver 0.006 0.075 0 1 0.011 0.102 0 1
Diabetes 0.074 0.262 0 1 0.082 0.275 0 1
Diabetes + complications 0.003 0.056 0 1 0.003 0.057 0 1
Hemiplegia or paraplegia 0.002 0.041 0 1 0.002 0.044 0 1
Renal disease 0.016 0.125 0 1 0.016 0.125 0 1
Moderate/severe liver disease 0.001 0.026 0 1 0.001 0.029 0 1
Metastatic cancer 0.013 0.114 0 1 0.019 0.135 0 1
AIDS 0.000 0.011 0 1 0.001 0.024 0 1

Hospital History
Year of operation 2010 2004 2018 2014 2006 2018
Number hospital admissions at time of operation 2.614 4.057 0 370 3.152 4.736 0 279
Number of diagnosis at time of operation 2.636 1.907 1 20 2.948 1.977 1 20
Days since diagnosis at time of operation 80.477 247.694 0 4862 115.708 337.408 0 5328
Waiting time 44.196 37.195 1 1123 36.446 30.809 1 1072

Patient Outcomes
In hospital death (30-days) 0.001 0.031 0 1 0.000 0.018 0 1
Emergency Readmission (30-days) 0.001 0.038 0 1 0.001 0.025 0 1
Urinary complication (2-years) 0.170 0.376 0 1 0.078 0.268 0 1
Erectile dysfuction (2-years) 0.016 0.125 0 1 0.010 0.099 0 1
Blood transfusion 0.009 0.095 0 1 0.000 0.012 0 1
Any adverse event 0.191 0.393 0 1 0.086 0.281 0 1
Length of stay (LOS) 4.406 3.620 0 124 1.935 1.784 0 60
Postoperative LOS 3.939 3.324 0 123 1.801 1.722 0 60

N 38389 29278

Note: The sample includes all RP Patients operated by NHS hospitals in England from April 2004 to April 2017. Patient risk factors are
identified using all inpatient admissions preceding the admission for RP surgery.
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Table II: Balancing of characteristics between traditional and robotic surgery patients

(1) (2) (3) (4) (5)

Traditional Robotic ∆̂ β se

Demographic Characteristics
Age 63.570 62.865 -0.074 -1.511∗∗∗ (0.169)
White 0.740 0.644 -0.148 -0.107∗∗∗ (0.025)
Rural-Urban Indicator 5.388 5.434 0.033 0.025 (0.044)

Risk Factors
Acute myocardial infarction 0.020 0.024 0.019 -0.009∗∗∗ (0.002)
Congestive heart failure 0.007 0.006 -0.005 -0.004∗∗∗ (0.001)
Peripheral vascular disease 0.012 0.012 0.000 -0.005∗∗∗ (0.001)
Cerebrovascular disease 0.010 0.011 0.005 -0.004∗∗ (0.001)
Dementia 0.001 0.001 -0.006 -0.001∗∗ (0.000)
Chronic obstructive pulmonary disease 0.089 0.105 0.039 -0.016∗∗∗ (0.003)
Rheumatoid disease 0.011 0.013 0.014 -0.003∗∗ (0.001)
Peptic ulcer disease 0.010 0.014 0.021 -0.002∗∗ (0.001)
Mild liver disease 0.006 0.011 0.039 -0.000 (0.001)
Diabetes 0.074 0.082 0.021 -0.016∗∗∗ (0.004)
Diabetes + complications 0.003 0.003 0.002 -0.001* (0.001)
Hemiplegia or Paraplegia 0.002 0.002 0.005 -0.000 (0.000)
Renal disease 0.016 0.016 0.000 -0.011∗∗∗ (0.002)
Moderate/severe liver disease 0.001 0.001 0.004 -0.000 (0.000)
Metastatic Cancer 0.013 0.019 0.030 -0.003 (0.002)
AIDS 0.000 0.001 0.017 0.000 (0.000)

Hospital History
Number hospital admissions at time of operation 2.614 3.152 0.086 -0.577∗∗∗ (0.094)
Number of diagnosis at time of operation 2.636 2.948 0.114 -0.386∗∗∗ (0.068)
Days since diagnosis at time of operation 80.477 115.708 0.084 0.216 (7.977)
Waiting time 44.196 36.446 -0.160 -5.516∗∗∗ (1.380)

Patient Outcomes
In hospital death (30-days) 0.001 0.000 -0.017 -0.000 (0.000)
Emergency Readmission (30-days) 0.001 0.000 -0.018 -0.000 (0.000)
Urinary complication (2-years) 0.170 0.078 -0.200 -0.046∗∗∗ (0.006)
Erectile dysfunction (2-years) 0.016 0.010 -0.038 -0.004 (0.003)
Blood Transfusion 0.009 0.000 -0.094 -0.002∗∗ (0.001)
Any adverse event 0.191 0.086 -0.217 -0.052∗∗∗ (0.006)
Length of stay (LOS) 4.406 1.935 -0.612 -1.256∗∗∗ (0.101)
Post-operative LOS 3.939 1.801 -0.571 -1.257∗∗∗ (0.097)

Note: The sample includes all RP Patients operated by NHS hospitals in England from April 2004 to April 2017. Colum (3)
shows the normalized difference between traditional and robotic surgery. Column (4) shows the coefficient from a regression
of the row variable on an indicator of robotic approach with year fixed effects. Standard errors from the regression are
shown in Column (4) and clustered at the patient postal area level.
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Table III: Estimated between surgeon variance component from risk adjustment model

RP Patients Urology Emergency Patients

(1) (2) (3) (4 ) (5) (6)

Between Surgeons Variance σ̂2 0.592*** 0.362*** 0.114** 0.099*** 0.080*** 0.046**
(0.095) (0.036) (0.035) (0.019) (0.017) (0.014)

Baseline Controls Yes Yes Yes Yes Yes Yes

Postal Area Fixed Effects No Yes No No Yes No

Hospital Fixed Effects No No Yes No No Yes

N 12486 12273 12477 124372 123335 124356

Note: Sample includes patients operated by NHS hospitals in England from 2004 to 2007. Columns 1, 2, and 3
include only RP patients. Columns 4, 5, and 6 include all urology patients admitted for surgery from the emergency
department. The dependent variable in the risk adjustment model is an indicator of adverse events from surgery.
For urology patients, this includes only 30 days in-hospital deaths and emergency readmissions. For RP patients,
adverse events also include complications from surgery arising within 2 years of the operation. Baseline controls
include patient demographic characteristics, 15 risk variables, hospital history variables, and year-fixed effects. The
variance component is estimated using a multilevel mixed effects logistic regression. The conditional distribution of
the response given the surgeon random effect is assumed to be Bernoulli, with the probability of adverse outcome
determined by the logistic cumulative distribution function. Robust standard errors in parenthesis. * Statistically
significant 0.10 level, ** at 0.05 level,*** at 0.01 level.

Table IV: Summary of alternative measures of skills

sample controls mean sd min max

srrPOST RP patients postal area fixed effects 0.941 0.308 0.366 2.875
srrHOSP RP patients hospital fixed effects 0.959 0.164 0.600 1.804
srrED Emergency patients hospital fixed effects 1.012 0.086 0.752 1.275

Note: SRR estimated using mixed effects logistic regression with surgeon random intercept. All models
include controls for patient demographic characteristics, 15 risk variables, and year-fixed effects. For
RP patients, controls also include patient hospital history. For emergency urology patients, controls
also include sex. The model’s outcome for RP patients is a binary indicator of adverse events, including
complications from surgery within 2 years, death, and emergency readmissions within 30 days of discharge.
The model’s outcome for emergency urology patients is a binary indicator of adverse events, including
death and emergency readmissions within 30 days of discharge. All models are estimated using data from
2004 to 2007.

44



Table V: In-hospital death for AMI patients and relative distance to robotic hospital

(1) (2) (3) (4) (5) (6)

Zdist -0.0004 -0.001 -0.0004
(0.001) (0.001) (0.001)

Zdist > 25 km 0.005 -0.018 0.021
(0.037) (0.038) (0.032)

Distance to nearest hospital -0.003∗∗ -0.003∗ -0.001 -0.003∗∗ -0.003∗ -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Baseline Controls Yes Yes Yes Yes Yes Yes

Year Fixed Effects No Yes Yes No Yes Yes

Postal Area Fixed Effects No No Yes No No Yes

Mean in-hospital death 0.05 0.05 0.05 0.05 0.05 0.05
Mean Zdist 38.07 38.07 38.07 38.07 38.07 38.07
N 385431 385431 385401 385431 385431 385401

Note: Sample includes patients admitted from the emergency department with AMI diagnosis code
in England from April 2009 to April 2014. Baseline controls include age, sex, indicator of ethnically
white, indicator of rural or urban area of residence, and day of the week. Columns (1), (2), and (3) have
relative distance as a continuous variable. Columns (4), (5), and (6) compare outcomes of AMI patients
above and below the median relative distance (25 km). The estimates are from a logistic regression with
standard errors clustered at the patient postal area level. * Statistically significant 0.10 level, ** at 0.05
level,*** at 0.01 level.
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Table VI: Patient outcomes and relative distance to robotic hospital in 2010

(1) (2) (3) (4) (5) (6)
2006 2007 2008 2009 ≤ 2009 2010

Independent variable Z2010
dist

Panel A: Postoperative length of stay

0.001 0.000 0.000 0.002 0.0004 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

Panel B: Adverse event from surgery

0.002 -0.0004 -0.001 0.004 0.001 0.006∗∗∗

(0.002) (0.004) (0.003) (0.002) (0.002) (0.001)

N 1399 1258 1111 815 7536 4384

Note: Sample includes RP patients operated by NHS hospitals in England. Panel A shows the estimates from
a linear regression of log post-operative length of stay on Zdist as of 2010. Panel B shows the estimates from a
logistic regression of a binary indicator of an adverse event from surgery on Zdist as of 2010. The columns indicate
the patient’s year of operation. Controls include age, ethnicity, and 15 comorbidity variables. Standard errors are
clustered at the patient postal area level. * Statistically significant 0.10 level, ** at 0.05 level,*** at 0.01 level.

Table VII: Test for monotonicity of relative distance instrument

Age < 64 Age ≥ 64 CCI < 2 CCI ≥ 2 White = 1 White = 0

Zdist -0.003∗∗∗ -0.003∗∗∗ -0.003∗∗∗ -0.003∗∗∗ -0.002∗∗∗ -0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N 31169 27284 47786 10667 17057 41396

Note: The sample includes all RP Patients operated by NHS hospitals in England from April
2007 to April 2017. Estimates from logistic regression where the dependent variable is an
indicator of the robotic approach. Controls include patient postal area and year fixed effects.
Standard errors are clustered at the patient postal area level. * Statistically significant 0.10
level, ** at 0.05 level,*** at 0.01 level.
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Table VIII: Estimated effects — Dependent variable indicator of adverse event from surgery

(1) (2) (3) (4) (5) (6)

Panel (A): τT

srrPOST 0.119∗∗∗

(0.018)
srrHOSP 0.174∗∗∗

(0.025)
srrED 0.0550

(0.060)
1[srrPOST < p(50)] -0.0648∗∗∗

(0.009)
1[srrHOSP < p(50)] -0.0483∗∗∗

(0.009)
1[srrED < p(50)] 0.0138

(0.011)
Panel (B): ∆τ
srrPOST ∗ P (Z) -0.110∗∗∗

(0.020)
srrHOSP ∗ P (Z) -0.121∗∗∗

(0.036)
srrED ∗ P (Z) 0.000661

(0.063)
1[srrPOST < p(50)] ∗ P (Z) 0.0601∗∗∗

(0.014)
1[srrHOSP < p(50)] ∗ P (Z) 0.0437∗∗∗

(0.013)
1[srrED < p(50)] ∗ P (Z) -0.0223

(0.013)
Panel (C)
ATE -0.104∗∗ -0.116∗∗∗ -0.112∗∗∗ -0.108∗∗ -0.107∗∗∗ -0.110∗∗

(0.032) (0.032) (0.030) (0.036) (0.031) (0.034)
ATT -0.107∗∗ -0.126∗∗∗ -0.116∗∗∗ -0.112∗∗ -0.115∗∗∗ -0.114∗∗

(0.034) (0.035) (0.031) (0.038) (0.034) (0.035)
ATUT -0.102∗∗∗ -0.109∗∗∗ -0.109∗∗∗ -0.105∗∗ -0.102∗∗∗ -0.106∗∗

(0.031) (0.031) (0.030) (0.036) (0.031) (0.034)
LATE -0.105∗ -0.126∗∗ -0.116∗∗∗ -0.0973 -0.120∗∗ -0.115∗∗

N 31189 31189 39471 31189 31189 39471

Note: Estimates from the outcome equation where the dependent variable is a binary indicator of adverse event
from surgery. In Panel (A) the coefficients measure the effects of skills on the outcome in the untreated state
(τ0 in Equation 14). In Panel (B) the coefficients interacted with the propensity score measure the difference
in effects between the treated and untreated state (∆τ in Equation 14). Controls not displayed include age, 15
risk variables, indicator of ethnically white, hospital history variables, distance to the closest hospital, year, and
patient postal area fixed effects. The year and the postal area fixed effects are not interacted with the propensity
score. The propensity score is estimated using a probit regression of the treatment indicator (robot=1) on the
control and the instrument Zdist. Bootstrapped standard errors clustered at the patient postal area level are
reported in parentheses. * Statistically significant 0.10 level, ** at 0.05 level,*** at 0.01 level.

47



Table IX: Estimated effects — Dependent variable postoperative length of stay (log)

(1) (2) (3) (4) (5) (6)

Panel (A): τT

srrPOST 0.121∗∗

(0.041)
srrHOSP 0.221∗∗

(0.069)
srrED 0.622∗∗

(0.208)
1[srrPOST < p(50)] -0.107∗∗∗

(0.027)
1[srrHOSP < p(50)] -0.0972∗∗∗

(0.029)
1[srrED < p(50)] -0.0887∗∗

(0.030)
Panel (B): ∆τ
srrPOST ∗ P (Z) -0.128

(0.070)
srrHOSP ∗ P (Z) -0.0740

(0.111)
srrED ∗ P (Z) -0.883∗∗∗

(0.252)
1[srrPOST < p(50)] ∗ P (Z) 0.0810∗

(0.037)
1[srrHOSP < p(50)] ∗ P (Z) 0.0762

(0.042)
1[srrED < p(50)] ∗ P (Z) 0.114∗∗

(0.040)
Panel (C)
ATE -0.454∗∗∗ -0.476∗∗∗ -0.418∗∗∗ -0.475∗∗∗ -0.463∗∗∗ -0.433∗∗∗

(0.083) (0.080) (0.076) (0.090) (0.080) (0.072)
ATT -0.498∗∗∗ -0.527∗∗∗ -0.469∗∗∗ -0.519∗∗∗ -0.513∗∗∗ -0.487∗∗∗

(0.092) (0.090) (0.084) (0.104) (0.091) (0.080)
ATUT -0.425∗∗∗ -0.441∗∗∗ -0.377∗∗∗ -0.445∗∗∗ -0.429∗∗∗ -0.388∗∗∗

(0.079) (0.075) (0.069) (0.082) (0.074) (0.067)
LATE -0.546∗∗∗ -0.573∗∗∗ -0.507∗∗∗ -0.550∗∗∗ -0.580∗∗∗ -0.508∗∗∗

(0.105) (0.100) (0.085) (0.114) (0.110) (0.079)
N 30637 30637 38817 30637 30637 38817

Note: Estimates from the separate method for the outcome equation where the dependent variable is log post-
operative length of stay. In Panel (A) the coefficients measure the effects of skills on the outcome in the untreated
state (τT in Equation 14). In Panel (B) the coefficients interacted with the propensity score measure the difference
in effects between the treated and untreated state (∆τ in Equation 14). Controls not displayed include age, 15
risk variables, indicator of ethnically white, hospital history variables, distance to the closest hospital, year, and
patient postal area fixed effects. The year and the postal area fixed effects are not interacted with the propensity
score. The propensity score is estimated using a probit regression of the treatment indicator (robot=1) on the
control and the instrument Zdist. Bootstrapped standard errors clustered at the patient postal area level are
reported in parentheses. * Statistically significant 0.10 level, ** at 0.05 level,*** at 0.01 level.
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Table X: Estimates from selection equation

(1) (2) (3) (4) (5) (6)

Zdist -0.033∗∗∗ -0.033∗∗∗ -0.034∗∗∗ -0.034∗∗∗ -0.033∗∗∗ -0.034∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.005)
srrPOST -1.616∗∗∗

(0.400)
srrHOSP -1.439

(0.755)
srrED -3.696∗

(1.485)
1[srrPOST < p(50)] 1.384∗∗∗

(0.221)
1[srrHOSP < p(50)] 0.444∗

(0.180)
1[srrED < p(50)] 0.917∗∗∗

(0.245)

Share robotic surgery 0.403 0.403 0.403 0.403 0.403 0.403
Mean Zdist 29.355 29.355 29.355 29.355 29.355 29.355
Mean skill measure 0.942 0.958 1.011 0.643 0.549 0.555
N 31189 31189 31189 31189 31189 31189

Note: Probit regression estimates exponentiated coefficients. Controls include patient demo-
graphic characteristics, 15 risk variables, hospital history variables, patient postal area, distance
to the nearest hospital, and year-fixed effects. Standard errors are clustered at the patient postal
area level. * Statistically significant 0.10 level, ** at 0.05 level,*** at 0.01 level.

Table XI: Estimated ATE and PRTE

Adverse Event from surgery Postoperative length of stay
srrPOST srrHOSP srrED srrPOST srrHOSP srrED

ATE -0.116∗∗∗ -0.104∗∗∗ -0.112∗∗∗ -0.454∗∗∗ -0.476∗∗∗ -0.418∗∗∗

(0.014) (0.014) (0.013) (0.021) (0.021) (0.019)

PRTE -0.131∗∗∗ -0.136∗∗∗ -0.113∗∗∗ -0.495∗∗∗ -0.486∗∗∗ -0.438∗∗∗

(0.015) (0.015) (0.013) (0.022) (0.022) (0.020)
N 30637 30637 38817 31189 31189 39471

Note: Standard errors clustered at the patient postal area level are reported
in parentheses. * Statistically significant 0.10 level, ** at 0.05 level,*** at 0.01
level.
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Figures

Figure I: Picture of a Da Vinci surgical system

Note: Picture shows the Da Vinci Robot surgical system from Intuitive Inc. On the
left the surgeon sitting at the console. Above the operating bed the robotic arms. On
the right the vision cart.

Figure II: Comparison of incisions

Note: Comparison of incisions required for traditional and robotic radical prostatec-
tomy
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Figure III: Comparison of skill measures

Note: The panel on the left shows the distribution of SRR computed using RP patients
from 2004 to 2007 under three different model specifications for the risk adjustment.
The panel on the right shows the distribution of SRR computed using emergency
urology patients from 2004 to 2007 under three different model specifications for the
risk adjustment.

Figure IV: Uptake of robotic radical prostatectomy in England

Note: The Figure plots the total number (left) and share (right) of RP by surgical
approach from 2007 to 2017. The data shows that the use of robotic surgery for RP in
England grew from 5 percent in 2007 to 80 percent in 2017. The steady increase in the
number of robotic operations coincided with a decrease in the number of traditional
surgeries. Traditional approach includes laparoscopies.
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Figure V: Hospital adoption of robotic surgery for RP patients

Note: The figure shows the location of trusts observed using a robot for RP surgery in
the observation period. The trusts are divided into bins 2007-2010, 2011-2014, 2015-
2018 according to the time they are first observed using the robot.
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Figure VI: Relative distance (km) distribution over time

Note: The figure shows the median and interquartile range of relative dis-
tance by year. Outside values are excluded. Data includes all patients
undergoing a radical prostatectomy in England for the period April 2007 to
April 2018.

Figure VII: Relationship between relative distance and robotic approach

Note: The panel on the left shows a binscatter plot where the dependent variable is an
indicator of whether the patient is operated on with the robot, and the independent
variable of interest is the patient’s relative distance to a hospital offering robotic surgery.
The variables are residualised based on the year of operation and the patient’s postal
area. The panel on the right shows the average predicted probability of having robotic
surgery at different values of relative distance. The margins are calculated from a
logistic regression, where the controls are the year of operation and the patient’s postal
area. Standard errors are clustered at the postal area level. The sample includes all
RP patients operated on by NHS hospitals in England from April 2007 to April 2018.
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Figure VIII: Common support representation

Note: Unconditional support jointly generated by instrument and covariates.
Covariates in the model include patient demographic characteristics, 15 risk
variables, hospital history variables, distance to the nearest hospital, patient
postal area, and year-fixed effects.

Figure IX: Representation of effects for binary indicator of skills

Note: The figure shows the coefficients obtained from estimating the MTE
for my three alternative skills measures and both patient outcomes. The
gray bar shows the difference in the untreated state (traditional surgery)
between high- and low-skilled surgeons. This is the coefficient on the indica-
tor of skills in the outcome equation (Equation 14). Low-skilled surgeons are
defined as those with a SR above the median. The dashed bar represents the
difference between high- and low-skilled surgeons in treatment effect. This is
the coefficient on the indicator of skills interacted with the propensity score
in the outcome equation (Equation 14). The black bar shows the implied
difference in the treated state between high and low skilled surgeons.
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Figure X: Marginal treatment effect curve - Indicator of adverse event from surgery

Note: Marginal treatment effects curve of robotic surgery from the separate method
using srrPOST as the skill measure in the model for (A) and (B). In (C), I compare
the MTE curve for my skill measures in both continuous and binary versions. The hor-
izontal axis in each plot is the percentile on the distribution of unobserved resistance
to robotic choice. Gray bands are 95% confidence intervals. Unobserved heterogeneity,
modeled as a function of the propensity score, p, parametrically under the assumption
of K(p) is normal. All specifications use the instrument Zdist as the excluded variable,
and control for patient demographic characteristics, 15 risk variables, hospital history
variables, distance to the nearest hospital, patient postal area, and year-fixed effects.
Area fixed effects are not interacted with propensity score. Standard errors are boot-
strapped with 100 repetitions and clustered at the postal area level.
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Figure XI: Marginal treatment effect curve — Postoperative length of stay (log)

Note: Marginal treatment effects curve of robotic surgery from the separate method
using srrPOST as the skill measure in the model for (A) and (B). In (C), I compare
the MTE curve for my skill measures in both continuous and binary versions. The hor-
izontal axis in each plot is the percentile on the distribution of unobserved resistance
to robotic choice. Gray bands are 95% confidence intervals. Unobserved heterogeneity,
modeled as a function of the propensity score, p, parametrically under the assumption
of K(p) is normal. All specifications use the instrument Zdist as the excluded variable,
and control for patient demographic characteristics, 15 risk variables, hospital history
variables, distance to the nearest hospital, patient postal area, and year-fixed effects.
Area fixed effects are not interacted with propensity score. Standard errors are boot-
strapped with 100 repetitions and clustered at the postal area level.
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Figure XII: Policy relevant treatment effect

Note: Estimates of marginal treatment effects of robotic surgery, as opposed to tra-
ditional surgery, on the probability of an adverse event and log postoperative length
of stay. The horizontal axis in each plot is the percentile on the distribution of unob-
served resistance to robotic choice. Unobserved heterogeneity is modeled as a function
of the propensity score, p, parametrically under the assumption of joint normality in
the separate approach. The estimated effects of the policy simulation are in orange.
Crosses indicate the weights
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